A Theorem and a Conjecture on Rectangles and Schur Functions
نویسنده
چکیده
Fix a rectangular Young diagram R, and consider all the products of Schur functions sλsλc , where λ and λ c run over all (unordered) pairs of partitions which are complementary with respect to R. Theorem: The self-complementary products, s λ where λ = λ, are linearly independent of all other sλsλc . Conjecture: The products sλsλc are all linearly independent.
منابع مشابه
On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملThe down operator and expansions of near rectangular k-Schur functions
We prove that the Lam-Shimozono “down operator” on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of “near rectangles” in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of ...
متن کاملProof of a positivity conjecture on Schur functions
In the study of Zeilberger’s conjecture on an integer sequence related to the Catalan numbers, Lassalle proposed the following conjecture. Let (t)n denote the rising factorial, and let ΛR denote the algebra of symmetric functions with real coefficients. If φ is the homomorphism from ΛR to R defined by φ(hn) = 1/((t)nn!) for some t > 0, then for any Schur function sλ, the value φ(sλ) is positive...
متن کامل. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...
متن کامل2 00 5 Schur Positivity and Schur Log - Concavity
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002